11 research outputs found

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    Application of Finite Difference Time Domain to Calculate the Transmission Coefficient of an Electromagnetic Wave Impinging Perpendicularly on a Dielectric Interface with Modified MUR-I ABC

    Get PDF
    MATLAB codes were implemented in this study for a one dimension wave formulation using the computational technique of finite difference time domain (FDTD) method. The codes have then been verified under two cases, one a simple one dimensional wave impinging perpendicularly on a dielectric layer from air interface and second is a one dimensional wave impinging momentarily on a small dielectric slab. The transmission coefficients under both the cases have also been verified. For the former case, there is a constant transmission coefficient irrespective of the frequency of the electromagnetic wave impinging on it and for the latter; there is a sinusoidal type variation due to multiple reflections along the wall of the dielectric slab. In the course of this implementation of the codes a novel technique to implement the absorbing boundary condition (ABC) on the dielectric interface has also been devised based on the Mur-I ABC which has been verified for a dielectric of dielectric constant 4єo. The implementation of the codes presents a recapitulation of the evolution of FDTD from Yee’s Algorithm to the latest modifications in the ABC.Defence Science Journal, 2012, 62(4), pp.228-235, DOI:http://dx.doi.org/10.14429/dsj.62.79

    CURATION AND MANAGEMENT OF CULTURAL HERITAGE THROUGH LIBRARIES

    Get PDF
    Libraries, museums and archives hold valuable collections in a variety of media, presenting a vast body of knowledge rooted in the history of human civilisation. These form the repository of the wisdom of great works by thinkers of past and the present. The holdings of these institutions are priceless heritage of the mankind as they preserve documents, ideas, and the oral and written records. To value the cultural heritage and to care for it as a treasure bequeathed to us by our ancestors is the major responsibility of libraries. The past records constitute a natural resource and are indispensable to the present generation as well as to the generations to come. Libraries preserve the documentary heritage resources for which they are primarily responsible. Any loss of such materials is simply irreplaceable. Therefore, preserving this intellectual, cultural heritage becomes not only the academic commitment but also the moral responsibility of the librarians/information scientists, who are in charge of these repositories. The high quality of the papers and the discussion represent the thinking and experience of experts in their particular fields. The contributed papers also relate to the methodology used in libraries in Asia to provide access to manuscripts and cultural heritage. The volume discusses best practices in Knowledge preservation and how to collaborate and preserve the culture. The book also deals with manuscript and archives issues in the digital era. The approach of this book is concise, comprehensively, covering all major aspects of preservation and conservation through libraries. The readership of the book is not just limited to library and information science professionals, but also for those involved in conservation, preservation, restoration or other related disciplines. The book will be useful for librarians, archivists and conservators. We thank the Sunan Kalijaga University, Special Libraries Association- Asian Chapter for their trust and their constant support, all the contributors for their submissions, the members of the Local and International Committee for their reviewing effort for making this publication possible

    Not Available

    No full text
    Not AvailablePurpose Soil erosion and loss threatens vast tracts of agricultural and non-agricultural land, worldwide. High soil erosion severely affects establishment of vegetation via effects on plant growth and productivity on already degraded lands. However, information on soil loss impact on tree plantation and their relationships is scarce in the ravine lands. Therefore, we assessed soil loss effects on tree growth and soil characteristics, and role of conservation measures in degraded ravine land. Methods The study consisted of comparing three systems, i.e., terracing, trenching, and sole slope to observe the effects on soil erosion and the resultant losses. In first system, a terraced land was designed from ravine top to bottom by dividing the slope into the four plots. In second system, ninety-seven trenches sized 2.0m× 0.5m× 0.5mwere designed on slope,while in third system, a continuous slope was maintained. Twenty-seven trees were planted at 8 m× 8 m spacing in each system. In all the systems, annual runoff, soil loss, tree growth, biomass and carbon stock, and soil properties were observed for the 7 years. Results Annual soil loss was recorded highest (5.1 t ha−1 year−1) in slope followed by trench (4.4 t ha−1 year−1) and terrace (3.8 t ha−1 year−1) systems, during the 7 years. In the slope system, increased soil loss resulted in the decreased tree height and collar diameter growth by 3–12% and 12–21%, respectively. Total biomass, carbon stock, and CO2 sequestration declined by 44–86% with the increased soil loss on the slope during the same period. Tree canopy area was also recorded lower in the slope, compared to terrace and trench measures. The soil loss relationship with tree characteristics revealed that growth, biomass, carbon stock, and canopy area consistently declined with the increased soil loss. In soil, proportional loss of organic carbon (11–21%), nitrogen (10–13%), phosphorus (25–32%), and potassium (4–13%) was also observed with increased soil erosion on the slope, compared to conservation measures. In contrast, soil loss reduction in the terrace and trench based measures improved the tree growth, biomass, carbon stock, and soil properties during the same period. Conclusion The soil loss negatively affected the tree growth, productivity and their restoration potential, while soil conservation measures showed strong potential to ameliorate the highly eroded ravine slopes. Therefore, tree plantations should be augmented with the appropriate soil and water conservation measures for achieving greater ecological and economic benefits in degraded ravine lands.Not Availabl

    Deficit irrigation scheduling with mulching and yield prediction of guava (Psidium guajava L.) in a subtropical humid region

    No full text
    Drip irrigation and mulching are often used to alleviate the problem of poor water management in many crops; however, these technologies have not yet been tested for applying water at critical stages of guava orchard growth in subtropical humid Tarai regions of India to improve the yield and quality. A field experiment was conducted over 2020 and 2021 which included three irrigation strategies: severe deficit irrigation (DI50), moderate deficit irrigation (DI75), and full irrigation (FI100), as well as four mulching methods: silver-black mulch (M-SB), black mulch (M-B), organic mulch (M-OM), and a control without mulch (M-WM). The results showed that both the relative leaf water content (RLWC) and the proline content exhibited an increasing trend with a decrease in the irrigation regime, resulting in a 123% increase in the proline content under DI50 conditions compared with FI100, while greater plant growth was recorded in fully irrigated plants and using silver-black mulch. Leaf nutrient analysis showed that FI100 and M-OM produced significantly higher concentrations of all nutrients. However, moderate deficit irrigation (DI75) along with silver-black mulch (M-SB) produced higher numbers of fruits per plant, higher average fruit weights, higher fruit yields, and maximum ascorbic acid contents. The irrigation water productivity (IWP) decreased with an increase in the irrigation regime; from severe water deficit to full irrigation, resulting in a 33.79% improvement in IWP under DI50 conditions as compared with FI100. Regression analysis outperforms principal component regression analysis for fruit yield prediction, with adjusted R-2 = 89.80%, RMSE = 1.91, MAE = 1.52, and MAPE = 3.83. The most important traits affecting the fruit yield of guava, based on stepwise regression, were leaf proline, leaf Cu, fruit weight, and IWP.Validerad;2023;Nivå 2;2023-01-20 (sofila);Funder: King Saud University, Saudi Arabia (grant no. RSP 2022R410)</p

    Climate-Smart Groundnuts for Achieving High Productivity and Improved Quality: Current Status, Challenges, and Opportunities

    No full text
    About 90% of total groundnut is cultivated in the semi-arid tropic (SAT) regions of the world as a major oilseed and food crop and provides essential nutrients required by human diet. Climate change is the main threat to yield and quality of the produce in the SAT regions, and effects are already being seen in some temperate areas also. Rising CO2 levels, erratic rainfall, humidity, short episodes of high temperature and salinity hamper the physiology, disease resistance, fertility and yield as well as seed nutrient levels of groundnut. To meet growing demands of the increasing population against the threats of climate change, it is necessary to develop climate-smart varieties with enhanced and stable genetic improvements. Identifying key traits affected by climate change in groundnut will be important for developing an appropriate strategy for developing new varieties. Fast-changing scenarios of product ecologies as a consequence of climate change need faster development and replacement of improved varieties in the farmers’ fields to sustain yield and quality. Use of modern genomics technology is likely to help in improved understanding and efficient breeding for climate-smart traits such as tolerance to drought and heat, and biotic stresses such as foliar diseases, stem rot, peanut bud necrosis disease, and preharvest aflatoxin contamination. The novel promising technologies such as genomic selection and genome editing need to be tested for their potential utility in developing climate-smart groundnut varieties. System modeling may further improve the understanding and characterization of the problems of target ecologies for devising strategies to overcome the problem. The combination of conventional breeding techniques with genomics and system modeling approaches will lead to a new era of system biology assisted breeding for sustainable agricultural production to feed the ever-growing population
    corecore